

Welcome to BarterDEX’s documentation!

BarterDEX is a decentralized cryptocurrency exchange using atomic swaps to trade coin A directly with coin B, without needing to trust a third party.

User documentation

	Frequently Asked Questions
	What is an atomic swap?

	How to get listed on BarterDEX?

	Electrum or Native?

	What are Zcredits?

	What are UTXOs?

	Why are multiple UTXOs needed?

	Why can’t I claim my expired 0-conf deposit?

	Who are alice and bob?

	Is it free to cancel an order?

	How do I get the private key of my smartaddress?

	How much are the fees?

	Currently supported coins

	What are the differences between BarterDEX and BlockNET DX?

	Do I need to leave BarterDEX running all the time?

	Getting Started with BarterDEX
	What you need to know before using BarterDEX

	Windows

	Guides
	How to use BarterDEX using CLI

	How to use Insomnia together with the CLI

	How to edit the coins file

	How to create a new BarterDEX trading network

Developer

	API docs

	Whitepaper

Frequently Asked Questions

What is an atomic swap?

An Atomic Swap is an on-chain, direct exchange of 2 different coins. For example KMD <-> LTC or BTC <-> SYS. It is atomic, because in a decentralized exchange, both parties must be assured that the other party is not able to skip out on his part, resulting in a loss of funds for 1 party.

Atomic means that a swap either totally succeeds or not at all.

Certain safeguards are needed to make sure the stealing of funds is not possible by either party.

How to get listed on BarterDEX?

The requirements for a coin to be able to do an atomic swap are:

	have BIP65 (Check LockTime Verify) [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki] implemented;

	support the following standard Bitcoin API methods (http://chainquery.com/bitcoin-api)

estimatefee importaddress
getblock importprivkey
getblockhash listunspent
getinfo listreceivedbyaddress
getrawmempool listtransactions
getrawtransaction validateaddress
gettxout sendrawtransaction
 signrawtransaction

Note that apart from supporting the above requirements, no additional custom code is needed to be able to trade on BarterDEX. (This in contrast to the misinformation being spread on several forums, where is stated that BarterDEX requires customizations to coins)

Electrum or Native?

Electrum lets you use the blockchain of the coin you want to trade, without having to download, install and sync that wallet. Just select Electrum and you are good to go.

Electrum is a Simple Payment Verification (SPV) service, somewhere on a server, that can be used to verify transactions on the network of the selected coin, without having to expose your private key. This means you can use this SPV service instead of going through the hassle of downloading the wallet of your coin, synchronizing the blockchain etc.

Native is when you download, install and sync the wallet of the coin you want to trade. Trading with native wallets is faster and more stable than using Electrum. It is highly recommended for Liquidity Providers to use Native and not to use Electrum.

What are Zcredits?

Zcredits are credits for being able to do zero confirmation swaps. Zero confirmation swaps let you swap 2 coins in approximately 30 seconds, instead of waiting for the coin’s block confirmation times.

You get Zcredits by depositing KMD and locking it for an X amount of weeks. So if you deposit 10 KMD you get 10 Zcredits, and trades worth up to 10 KMD are now eligible for Zero Confirmation swaps. This is valid for all coins, even if KMD is not involved in a trade. BarterDEX will determine the value of the trade equivalent in KMD to check if a Zero Confirmation swap is possible. For BarterDEX to be able to determine this, a price must be set for the coin/KMD pair.

What are UTXOs?

UTXO stands for Unspent Transaction Output [http://learnmeabitcoin.com/glossary/utxo]. BarterDEX trades UTXOs, not balances. This makes trading different from trading on a centralized exchange. Because of the atomic swap protocol, UTXOs must have certain sizes to be eligible for a trade.

Basically this means that you need to make at least 3 transactions to your smartaddress to be able to trade. These transactions should have sizes X, X * 1.2 and X * 0.1.

Why are multiple UTXOs needed?

BarterDEX is an UTXO based exchange. This means that 1 UTXO is exchanged for 1 other UTXO. For example: 1 KMD UTXO with a value of 32 KMD is traded for 1 BCH UTXO with a value of 0.5 BCH.

Why can’t I claim my expired 0-conf deposit?

This is due to avoid bad actors stealing the deposit, and depends on the time you made a deposit. Funds are available 3 - 10 days after the expiration of the number of weeks you defined when making the deposit.

The calculation in the code:

timestamp = (uint32_t) time(NULL);
timestamp /= LP_WEEKMULT;
timestamp += weeks + 2;
timestamp *= LP_WEEKMULT;

Doing a claim on a still locked deposit will return the time you need to wait before your deposit can successfully be claimed.

Who are alice and bob?

In BarterDEX terms, alice is the one who initiates a trade. She buys an order from bob, who already put up an order in the orderbook. It is like saying bob has a marketstand with something to sell and alice walks up to the stand to buy something.

Is it free to cancel an order?

Yes. Placing orders and sending a request doesn’t cost you anything. Only when your request has found a willing trade partner and a connection has been established, the dexfee and transaction fees will be paid.

How do I get the private key of my smartaddress?

BarterDEX uses watch-only addresses, which basically means that BarterDEX is a trade wallet. The passphrase you enter when starting BarterDEX is the access to your trade wallet and thus, coins.

It requires starting marketmaker from the command line to retrieve all private keys of all the smartaddresses, based on the passphrase. You do this by adding "wif":1 to the marketmaker startup arguments json. In the initial getcoin that marketmaker does, it will return all wifs for each smartaddress.

For Komodo formatted addresses, it is possible to do the calcaddress api call.

How much are the fees?

Fees for using the exchange exist in paying a dexfee, to be paid by alice (the one initiating the trade), also called the taker fee. This is about 0.15% of the alicepayment - the amount you’re sending to the other party.

There are no maker fees.

You also pay the standard transaction fees, for sending the payment to the other party.

The dexfees are collected in a specific address, generated from the rmd160 hash ca1e04745e8ca0c60d8c5881531d51bec470743f. For KMD, this is RThtXup6Zo7LZAi8kRWgjAyi1s4u6U9Cpf [https://kmd.explorer.supernet.org/address/RThtXup6Zo7LZAi8kRWgjAyi1s4u6U9Cpf], BTC: 1KRhTPvoxyJmVALwHFXZdeeWFbcJSbkFPu [https://blockexplorer.com/address/1KRhTPvoxyJmVALwHFXZdeeWFbcJSbkFPu]. Once a significant amount of fees are collected, the fees are paid as dividend to DEX assetholders. DEX is a Komodo asset and can be traded on BarterDEX.

Currently supported coins

	Coin

	Name

	Asset

	Name/description

	BTC

	Bitcoin

	REVS

	Revenue Shares

	LTC

	Litecoin

	SUPERNET

	Supernet / Unity

	KMD

	Komodo

	DEX

	InstantDEX

	BTG

	Bitcoin Gold

	PANGEA

	Pangea Poker

	BCH

	Bitcoin Cash

	JUMBLR

	JUMBLR [https://nxtforum.org/nxtservices-releases/jumblr-decentralized-bitcoin-mixer-seeking-marketing-lead-and-also-gui-dev/]

	ZEC

	Zcash

	BET

	BET Platform

	VTC

	VertCoin

	CRYPTO

	CRYPTO777 [https://nxtforum.org/consensus-research/crypto777/]

	DOGE

	DogeCoin

	HODL

	HODL

	HUSH

	Hush

	MSHARK

	MSHARK

	GRS

	GroestlCoin

	BOTS

	Tradebots

	DGB

	DigiByte

	COQUI

	Coqui

	XMCC

	Monoeci

	WLC

	WirelessCoin

	BTCH

	Bitcoin Hush

	KV

	Key-Value

	CRC

	CrowdCoin

	CEAL

	CEAL

	VOT

	VoteCoin

	MESH

	MESH

	INN

	Innova

	ETOMIC

	ERC20

	MOON

	MoonCoin

	
	

	CRW

	Crown

	
	

	EFL

	eGulden

	
	

	GBX

	GoByte

	
	

	BCO

	BridgeCoin

	
	

	BLK

	BlackCoin

	
	

	ABY

	Applebyte

	
	

	STAK

	Straks

	
	

	XZC

	Zcoin

	
	

	QTUM

	QTUM

	
	

	PURA

	PURA

	
	

	DSR

	Desire

	
	

	MNZ

	Monaize

	
	

	BTCZ

	Bitcoin Z

	
	

	MAGA

	MagaCoin

	
	

	BSD

	Bitsend

	
	

	IOP

	IoP

	
	

	BLOCK

	BlockNET DX

	
	

	CHIPS

	CHIPS

	
	

	888

	OctoCoin

	
	

	ARG

	Argentum

	
	

	GLT

	Global Token

	
	

	ZER

	Zero

	
	

	HODLC

	HOdlcoin

	
	

	UIS

	Unitus

	
	

All the Komodo Platform assetchains [https://www.komodoplatform.com/en/blog/komodo-smart-contracts-assetchains-and-geckochains]

What are the differences between BarterDEX and BlockNET DX?

BlockNET DX, or BlockDX, is a coin which focus solely lies on creating a Decentralized Exchange. The differences between BarterDEX and BlockDX are subtle, but important.

	First of all, the fees:

	fees:

	BlockDX

	BarterDEX

	Maker-fee

	0.05%

	none

	Taker-fee

	0.20%

	0.15%

These fees do not take standard transaction fees into account, which for BarterDEX is based on the amount of transactions necessary to do an atomic swap (4 for maker, 3 for taker). BlockDX is (at the time of this writing) not yet live, so nothing can be said of how many standard transaction fees they require.

	BlockDX uses so-called Service Nodes to be able to do atomic swaps. They are essential in the process of doing an atomic swap; without the Service Nodes, you can’t trade. This in stark contrast with BarterDEX, where you don’t need Service Nodes to be able to trade. 2 nodes, both running BarterDEX, are able to do an atomic swap between each other, without needing anything else.

	To use the BlockDX, you need to download and install the BlockDX wallet. BarterDEX is not tied to any cryptocurrency; all you need is the marketmaker executable that gives you access to BarterDEX networks.

At the time of this writing, BlockDX has yet to release (a beta of) their DEX and its source code. Until then, no proper comparison can be made between BlockDX and BarterDEX. It is clear though, that BlockDX is going to be the closest ‘competitor’ to BarterDEX.

Do I need to leave BarterDEX running all the time?

Yes. Atomic swaps needs transactions signed with your private key, so you need to leave BarterDEX running to be able to execute orders.

Yes, that possibility exists, but for now it’s only done using the Command Line. See the guide in our Guides section explaining what needs to be done.

Getting Started with BarterDEX

What you need to know before using BarterDEX

differences between BarterDEX and a centralized exchange
coin confirmation times

UTXO trading: 2+ deposits minimum in order to trade.
account for network fees
Total balance is sum of utxos.
change gets back into smartaddress, creating a new UTXO.

alice and bob, which payments need to happen in order to atomically swap

buying an order (mini auction story)
request takes at least 60 seconds

How does the decentralized orderbook work, p2p etc. not always uptodate

setting up the native wallet + .conf file -> for each coin?

Windows

Download and setup

Download the latest version of BarterDEX [https://github.com/KomodoPlatform/BarterDEX/releases]

[image: _images/github_release.png]
Create a folder on your desktop and drag the win64 folder in it:

Guides

How to use BarterDEX using CLI

Using BarterDEX with the Command Line Interface, you get access to all the low level Remote Procedure Calls (RPC) that exist in BarterDEX. It gives you power and control over how you want to be a trader / marketmaker. Throughout this guide, the command line (terminal) is used for installing BarterDEX.

Requirements

At this time, only Linux and MacOS are supported.

Linux (16.04)

Download and install Nanomsg:

git clone https://github.com/nanomsg/nanomsg
cd nanomsg
cmake .
make
sudo make install
sudo ldconfig

Install required packages:

sudo apt-get update && sudo apt-get install git libcurl4-openssl-dev build-essential

MacOS

To install Nanomsg on MacOS, it’s easiest to install it using Homebrew. Homebrew is a handy package manager for MacOS. If you don’t have it already, download it by entering the following into a Terminal window:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Afterwards, install Homebrew by typing:

brew install nanomsg

That’s it!

Installation & Setup

Installation is the same for Linux and MacOS. Start by cloning the SuperNET repository:

git clone https://github.com/jl777/SuperNET -b dev

This will download all the files necessary to start using BarterDEX from the command line. It uses the Development branch, assuring you with the latest updates. If you don’t want this, type git checkout master to work with more stable releases. If you want the very latest, untested changes, type git checkout jl777.

Now navigate to the SuperNET folder and execute the install script:

cd ~/SuperNET/iguana/exchanges
./install

This copies a bunch of scripts in the dexscripts folder, which is where we need to go next. This dexscripts folder now contains executable scripts that issue the most common API calls.

cd ../dexscripts

Before we can use any of these scripts, some security measures are needed to prevent bad actors from issuing API calls without your consent. The passphrase and userpass values take care of this security.

Create the passphrase file. Type the following and hit enter:

nano passphrase

This file should contain the following line, with a strong passphrase between the “”:

export passphrase="<strong userpass value here>"

Ctrl-x to exit, press y and then enter to save the changes.

The userpass value is derived from the passphrase value, and in order to obtain the userpass value, we need to start BarterDEX. Starting BarterDEX (or actually the marketmaker process) is done by executing the client script, which basically is an automated combination of retrieving the latest updates and building the marketmaker executable file: (it can take a while before anything shows up)

./client

Let it load until you see a line that starts with >>>>>>>>>> DEX stats 127.0.0.1:7783. This means the BarterDEX node is now up and running and that it’s able to listen for commands.

To obtain the userpass value, we need to execute the setpassphrase script. Open a new terminal window, navigate to the dexscripts folder and execute the setpassphrase script:

cd ~/SuperNET/iguana/dexscripts
./setpassphrase

The response contains the userpass value. Copy this value and paste it in a newly created userpass file:

nano userpass
export userpass="<paste userpass value here>"

Ctrl-x to exit, y and enter to save changes.

Everything is now good to go. From here on, you can issue any script that is in the dexscripts folder, such as the orderbook script, that fetches all the orders from the specified pair, or the getcoin script that gets all the coin-specific information from the coin as defined inside that script.

The API docs explain all the BarterDEX API calls.

How to use Insomnia together with the CLI

Insomnia is a great tool to replace the terminal window, but still be able to issue all the API calls in a visually more attractive way. Insomnia stores all the different API calls in a folder structure, with the possibility to set environment variables on all calls in a folder. This makes it quite easy to maintain different netid’s or manage multiple marketmakers on the same netid using a different RPC port.

[image: _images/insomnia-overview.png]
Download Insomnia here: https://insomnia.rest. It is available for all platforms. This guide will use Linux as an example.

It is not necessary to have native coin daemons running. As you will see, managing different coins using Electrum in Insomnia is not difficult.

Make sure to follow the above guide: How to use BarterDEX using CLI. We need to be able to start a marketmaker instance from the command line in order to start using Insomnia.

Setting the passphrase

The first call you need to do when you start a marketmaker instance, is to set the passphrase using the setpassphrase call. Normally, using a CLI, you go to ~/SuperNET/iguana/dexscripts and execute the setpassphrase script stored there. Now, we are going to open that script and copy the contents to Insomnia.

Go to the dexscripts folder:

cd ~/SuperNET/iguana/dexscripts
nano setpassphrase

[image: _images/setpassphrase-init.png]
You’ll see that this script uses the passphrase as defined in the passphrase file, and that the curl command below it is the RPC issued to the marketmaker instance. It is only this curl command we need in Insomnia.

Copy the following setpassphrase curl command to your clipboard (it is the same as the one in the dexscripts folder):

curl --url "http://127.0.0.1:7783" --data "{\"userpass\":\"ef7ca9d596f4d0b504011989c9261330d3ab6c0aa092e779ce6479f8c23cd413\",\"method\":\"passphrase\",\"passphrase\":\"$passphrase\",\"gui\":\"nogui\"}"

Now, go to Insomnia, and create a New Request (Ctrl-N).

[image: _images/setpassphrase-new-request.png]
Name it setpassphrase and click Create.

Paste the just copied curl command in the textfield area, right next to the the GET dropdown:

[image: _images/setpassphrase-copy-curl.png]
Insomnia recognises this curl command, and automatically extracts the ip-address and the data. Let’s call that middle part of Insomnia the input screen. It still looks a bit ugly, so let’s make it look better.

Click on Other, and change Other to JSON.

[image: _images/setpassphrase-to-json.png]
Next, Beautify this JSON:

[image: _images/setpassphrase-beautify.png]
It should result in this:

[image: _images/setpassphrase-after-beautify.png]
Looks better, right? This process of copying a curl command from the dexscripts folder, creating a new request and pasting the curl command in Insomnia is what you probably need to do for most of the commands, like orderbook, buy and balances. Actually, all calls as defined in the API docs can be copied into Insomnia.

Now enter your passphrase in the area where the passphrase still is empty, between the 2 quotes. Start a marketmaker instance by running ./client from the dexscripts folder and let it boot. When it’s done booting, click the Send button in Insomnia for the setpassphrase request.

(if the output on the right side of Insomnia complains that the userpass has not been set, make sure to set the userpass value in the JSON data with ef7ca9d596f4d0b504011989c9261330d3ab6c0aa092e779ce6479f8c23cd413).

This is what you should see in the output part of the screen, when you clicked Send:

[image: _images/setpassphrase-after-send.png]

Fetch the orderbook

The next thing you probably want to see, is an orderbook for some pair, like KMD/BTC. Go to the dexscripts folder again, copy the complete curl command for orderbook and paste it in a new request. I called this new request orderbook KMD/BTC and the end result should look like this:

[image: _images/orderbook-initial.png]
Since with KMD/BTC, you’re saying you want to buy KMD with BTC, the data in the JSON needs to be changed. Change REVS to KMD and KMD to BTC, such that "base": "KMD" and "rel": "BTC".
You also need to copy the userpass from the setpassphrase call we did before. On the second line in the output of the setpassphrase call, you see a userpass value. Copy this value and paste it in the orderbook request. It should end up like this:

[image: _images/orderbook-update-data.png]
Try Sending this request. It will complain that at least one of the coins is disabled, so we need to enable them. A coin must be explicitly enabled before trades can happen. By default, all coins except KMD and BTC are disabled at startup, which means that if you have a native KMD or BTC daemon running, you don’t have to explicitly enable KMD or BTC. If you don’t have a KMD daemon, or a BTC daemon, you need to use a Electrum SPV for that. Let’s first enable both coins using Electrum.

Go to http://pad.supernet.org/electrum-servers where you’ll find a long list of all coins that support Electrum (https://github.com/jl777/coins will contain all electrum servers in the future). Find BTC, copy the curl command and paste it in Insomnia, like you did with the other requests. Do the same for KMD in a new request, such that you end up with 2 requests: electrum BTC and electrum KMD:

[image: _images/electrum-kmd-btc.png]
Click Send for both requests, and if all is right, you’ll see a success message for both requests in the output screen.

Now that both coins are enabled (a successful electrum request automatically enables the coin), we can go to the orderbook request and see if something happens. If all is right, you’ll see something like this:

[image: _images/orderbook-output.png]
For enabling coins when you have a native coin daemon running, the enable request is needed. Copy the following curl command in a new Insomnia request, called enable <coin>. I use ZEC in this example.

curl --url "http://127.0.0.1:7783" --data "{\"userpass\":\"$userpass\",\"method\":\"enable\",\"coin\":\"ZEC\"}"

This enables ZEC to be used in marketmaker for the current session. If you stop marketmaker and start it again, you need to enable ZEC again before it can be used in marketmaker. This goes for every other coin, except KMD and BTC.

To avoid having to enable coins everytime you start marketmaker, you need to edit the coins file: How to edit the coins file.

Environment variables

Now that we made a couple of requests, suppose you want to change the passphrase, and consequently the userpass. You’ll have to go through every request and change the userpass value. With 25 requests, this becomes a bit tedious.

Using environment variables, we can set a variable and use it in each request. This way, you only need to change a value once, and it will apply to all the requests.

Click on No Environment and click Manage Environments (or press Ctrl-E):

[image: _images/env-init.png]
This leads you to the Base Environment, showing an empty JSON file. This JSON file will store all the global variables. Let’s make a global myuserpass variable, containing your userpass.

[image: _images/env-base-userpass.png]
Click Done in the right bottom corner. Now, choose a request and remove the userpass value, but leave the 2 quotes, such that the following appears: "userpass": "". Start typing myuserpass in between the quotes, and wait for a dropdown to appear. When it appears, select the myuserpass value you see:

[image: _images/env-dropdown.png]
If done correctly, you’ll see this purple box appear between the 2 quotes. Do this for all your requests, except the setpassphrase request, since that requires a default passphrase for initial start-up.

[image: _images/env-orderbook-result.png]

Buy request

We have successfully fetched an orderbook for the KMD/BTC pair. Let’s try to buy something.

Copy the following buy curl and paste it in a new Insomnia request:

curl --url "http://127.0.0.1:7783" --data "{\"userpass\":\"{{myuserpass}}\",\"method\":\"buy\",\"base\":\"KMD\",\"rel\":\"BTC\",\"relvolume\":0.005,\"price\":0.0005}"

[image: _images/buy-copy-curl.png]
Buying a coin with another coin always happens in pairs: KMD/BTC means that KMD is the base coin and BTC is the rel coin: base/rel. You always buy base with rel, so in this case, you buy KMD with BTC. This means that you need some BTC in your BTC smart address, to be able to buy KMD with it, and you need to have at least 2 BTC transactions in this smart address, because you are paying a small dexfee too.

(For reasons why 2 transactions (UTXOs) are needed, read the Overview of the atomic swap protocol.)

You can get this BTC smart address by selecting the setpassphrase request and finding the "BTC": "<address here>" line.

rel and relvolume are related. The amount of KMD you can buy, depends on the relvolume you define. A glance at the orderbook will give you an idea about what size relvolume should be. Also, the amount of KMD you receive is a combination of relvolume and price. It is a result of a trade, rather than a goal. It is not simply saying: “I want 10 KMD, figure out how much BTC I need to pay”. Instead, it is the other way around: “Here is 1 BTC, figure out how much KMD I get”.

Take for example this order in the orderbook for KMD/BTC:

[image: _images/buy-orderbook-ex.png]
There are three things in this ask that you need to pay attention to:

	avevolume means the average volume of KMD this seller has to offer, expressed in BTC. This is useful, because you need to define the relvolume in your buy request as BTC.

	maxvolume means that the amount defined here is the largest KMD utxo of this seller.

	depth is a phrase commonly used by traders. Here it defines the sum of all KMD utxos from all sellers of KMD, cumulatively.

If you successfully want to buy this order, you need to adapt the relvolume in your buy request to the volume specified in this order. For this order, it would need to be lower than 0.00498998 BTC. It also depends on the utxo set of the seller, because a seller needs to be able to do a deposit and the actual payment. A deposit is about 13% larger than the actual payment, which means that the seller has to have 2 utxos of about the same size, in order to sell something of that size. To read more about this, read the Overview of the atomic swap protocol.

It is also important to state a price in your buy request. The price you define here is the maximum price you want to pay for your KMD. Since the order has set a price of 0.00036349, your max price needs to be a little above it, for your request to find willing counterparties to respond.

Now that we know all the information for submitting a buy request, we can create it. The following should, if the seller has enough utxos and if the atomic swap completes successfully, yield you some KMD (based on the data shown above):

{
 "userpass": "{{myuserpass}}",
 "method": "buy",
 "base": "KMD",
 "rel": "BTC",
 "relvolume": 0.001,
 "price": 0.00037000
}

Note

Because of network propagation times and the use of cached data, the data shown in the orderbook is not always 100% up-to-date.

Contrary to centralised exchanges like Binance or Bittrex, submitting the buy request to the BarterDEX network by clicking Send in Insomnia does not fulfill this order automatically. Instead, what marketmaker does is sending a buy request onto the decentralised network, to all the other marketmaker nodes your node is connected to. Each node will see this request, and if there is a node that has a price set for this KMD/BTC pair, it will evaluate your request and if it fulfills all requirements (such as price and correct relvolume), it will reply with a message containing a counteroffer. This counteroffer is always better than the buy request you initially sent, because it falls within the boundaries you set in your buy request.

Your buy request can have multiple nodes on the marketmaker network respond to it. This all depends on the boundaries you set and the number of marketmaker nodes in the network. Your node then picks the best (lowest) price and starts the trade.

However! Defining a buy request that fulfills an order from the orderbook will not guarantee you a successful trade. Network issues could stop a trade, as well as out-of-date data from the seller. The orderbook may be stating that a seller has utxos, but in reality someone else could have bought the order already.

// TODO: hidden sellers (orders that exist but are not shown in orderbook)
// TODO: switch pairs, switch price

Folders

Filtering

Electrum calls

History

Insomnia stores a list of all the calls you did in the past, including its output. This is useful for debugging and retrieving information you might need at a later stage.

How to edit the coins file

The coins file contains all the currently supported coins in BarterDEX. It is loaded into marketmaker each time you start it. The file can be edited to your likings, mainly to enable coins on marketmaker startup automatically, without having to enable coins one by one.

Open the coins file with nano:

cd ~/SuperNET/iguana/dexscripts
nano coins

This will show you a list of all coins. Suppose you want to enable ZEC everytime you start marketmaker. You need to add the argument \"active\":1, to that JSON object, such that it results like this:

[image: _images/edit-coins-zec.png]
To find a coin in this long list of supported coins, type Ctrl-W to search.

You can make as many coins active as you like. If the native daemon of an active coin is not running, marketmaker will ignore the coin and leave the coin disabled.

How to create a new BarterDEX trading network

Since BarterDEX is a decentralized, peer-to-peer network, seeded by some ip-addresses to create the network, others can create a BarterDEX network of their own. This enables people to trade within a private group of traders, or to trade directly from person to person.

See New or private network in the API docs on how to do this. (there currently is no GUI to handle this process)

API docs

WORK IN PROGRESS! This will list all API commands available in BarterDEX. WORK IN PROGRESS!

Introduction

BarterDEX uses a custom-made peer-to-peer network and has Remote Procedure Calls (RPC) to talk with and get information from the BarterDEX network. If you installed BarterDEX by following the How to use BarterDEX using CLI guide, you’ll have a lot of these commands ready to use in the ~/SuperNET/iguana/dexscripts folder. These API docs will explain what each command does and what the possible arguments for each method are.

marketmaker is the system process that is started on a machine.

You need to set a strong passphrase (prior to starting marketmaker) and userpass to be able to talk to BarterDEX using RPC. The passphrase is what determines the addresses and the userpass value, and will be needed in the startup arguments when starting the marketmaker process on your machine (see below).

Curl can be used to send commands, see the following example taken from the dexscripts folder:

#!/bin/bash
source userpass
curl --url "http://127.0.0.1:7783" --data "{\"userpass\":\"$userpass\",\"method\":\"autoprice\",\"base\":\"KMD\",\"rel\":\"BTC\",\"margin\":0.0001}"

The userpass is sourced from the dexscripts folder, so that file has to be created in the dexscripts folder prior to sending a command. The userpass is there to prevent bad actors from issuing RPC commands. Marketmaker will not work without it set.
Each command to BarterDEX will need this userpass value as value of the userpass key in the JSON.

127.0.0.1:7783 is the ip address and port where BarterDEX is listening for commands at default, when no rpcport is defined in the startup arguments.

The json code in all the methods below is the data that is needed for each method described (mind the escape characters when using shell). For example:

{
 "userpass": "<userpass>",
 "method": "autoprice",
 "base": "KMD",
 "rel": "BTC",
 "margin": 0.0001
}

Replace everything that is shown as <this> with your own data.

Starting marketmaker

There are two different nodes in BarterDEX: a full relay node (Liquidity Provider, or LP, node) and a node that doesn’t relay (client node). In the dexscripts folder, these are started by ./run or ./client, respectively. Normally, only Liquidity Providers will prefer a full relay node, as they can respond to incoming requests one hop sooner. Others will use ./client, since it doesn’t require as much bandwidth as a full relay node and can therefore be perfect for regular traders on BarterDEX.

Startup arguments

The following startup arguments need to be provided when starting the marketmaker binaries.

A full relay node (LP node) is started by running marketmaker with the following arguments string:

{
 "gui": "<name of gui>",
 "profitmargin": 0.01,
 "userhome": "<userhome> + /",
 "passphrase": "<passphrase>",
 "coins": ["<coins>"]
}

A node that doesn’t relay (client node) has the following marketmaker startup arguments:

{
 "gui": "<name of gui>",
 "client": 1,
 "userhome": "<userhome> + /",
 "passphrase": "<passphrase>",
 "coins": ["<coins>"]
}

	gui is the codename for the GUI used to start marketmaker with. If you are the developer of a GUI, you need to define a codename for your GUI. Share this in the Komodo Platform slack and you will get paid for every trade a user makes using your GUI.

	profitmargin is the default profitmargin that this LP node will use when placing orders in orderbooks using the autoprice method.

	client: when set to 1, it defines a client node.

	userhome is the location of the userhome.

	passphrase is the passphrase that is needed by marketmaker to determine the userpass and all smartaddresses that BarterDEX is going to use.

	coins needs a JSON of all BarterDEX-enabled coins. Not all cryptocurrencies are able to do atomic swaps, because they lack CheckLockTimeVerify (BIP65) or one of the necessary Bitcoin API methods (See How to get listed on BarterDEX? for details).

Optional:

	wif when set to 1, the setpassphrase API call will show WIF keys for all smartaddresses.

After marketmaker started successfully, the first RPC to be issued will always return a getcoin <REF TO GETCOIN> call for all coins, using ‘default’ as the default passphrase. This will also return the default userpass, which will need to be used to set the passphrase of the user, using the passphrase api call:

{
 "userpass": "1d8b27b21efabcd96571cd56f91a40fb9aa4cc623d273c63bf9223dc6f8cd81f",
 "method": "passphrase",
 "passphrase": "<passphrase>",
 "gui": "<name of gui>",
 "netid": 0
}

The netid needs to be defined when using a netid other than 0.

This method will return a response containing the userpass value for the user passphrase as defined in the passphrase method.

New or private network

In order to start a network other than the default network, you need to add at least 2 arguments to the marketmaker startup arguments. When initiating a new network, a full relay node must be used, and it has to define "netid":<int netid> and "seednode":"<ipaddress>" to the marketmaker startup arguments, where the netid is any integer higher than 0 but lower than 14420. The seednode is the ip address of the server being a full relay node.

Non-relay nodes (client) need to use the same 2 arguments in its startup arguments, to be able to join that network.

At default, the RPC port for a marketmaker instance is 7783. To override this setting, add "rpcport":<int port> to the startup arguments. This port can be any port in the range 1025 - 65535. Defining the RPC port is for local networking; other nodes in the network do not have to comply by having the same RPC port settings.

Multiple marketmaker instances

Multiple instances of marketmaker on the same machine are possible, by defining a different netid, seednode (optional) and rpcport. For example: One node is joining an existing network using netid:0 and rpcport:8800. A second instance of marketmaker can now be started with netid:1 and rpcport:8810. Each node has now access to a different network, and thus a different orderbook.

When initiating a new network, apart from defining the netid, the seednode has to be defined too. As long as the combination of netid and seednode does not exist yet, a new network will be created. Therefore, multiple networks can exist with netid:0, each with a different orderbook. The seednode is essential for defining multiple networks using the same netid. When no seednode is defined, the default seednodes [https://github.com/jl777/SuperNET/blob/dev/iguana/exchanges/LP_nativeDEX.c#L141] are used, which essentially are the seednodes of the main BarterDEX network. No new network will then be created; the marketmaker instance will be joining the existing, main BarterDEX network.

This basically means that an almost infinite number of BarterDEX networks can be created, using the netid and seednode startup arguments for marketmaker.

General commands

orderbook

One of the most important calls in an exchange: getting to see the orderbook for a specific pair.

{
 "userpass": "<userpass>",
 "method": "orderbook",
 "base": "<base_coin>",
 "rel": "<rel_coin>"
}

Output:

{
 "bids": [
 {
 "coin": "<rel_coin>",
 "address": "RKdCvGQZbjUf51ae6xsNu5by8tZL5ztjhW",
 "price": 0.11011000,
 "numutxos": 0,
 "avevolume": 0,
 "maxvolume": 0,
 "depth": 0,
 "pubkey": "89274a7a0e93b850edb34907250ce9e3d3217b3d864326d0553bf3592a535c05",
 "age": 55,
 "zcredits": 0
 }
],
 "numbids": 1,
 "biddepth": 0,
 "asks": [
 {
 "coin": "<base_coin>",
 "address": "RK5xVwfd1Qf8iuTymMUUri22rYxDW3396R",
 "price": 0.10000000,
 "numutxos": 4,
 "avevolume": 2.23920003,
 "maxvolume": 2.40000003,
 "depth": 8.95680013,
 "pubkey": "198a41d6259ab7585d7dd566966375d21361d191d59c698bf3d6e9f47df99f7c",
 "age": 20,
 "zcredits": 0
 }
],
 "numasks": 1,
 "askdepth": 11.19600016,
 "base": "<base_coin>",
 "rel": "<rel_coin>",
 "timestamp": 1520187231,
 "netid": 0
}

Optional:

	fetching orderbook

	get coin info, smart addy etc

	balance(s)

	listunspent

	swapstatus

Price commands

Most, if not all, of the trade commands use the base/rel notation of pricing orders.

autoprice

The autoprice command is a rich command that allows anyone to create an order using data from CoinMarketCap or any other exchange. It refreshes the price every 1-2 minutes, such that once the autoprice command is executed, the order will be in the orderbooks permanently.

There are several possibilities for autoprice:

fixed price

The following command puts an ask in the BTC/KMD orderbook and basically says: ‘I want to get KMD by selling BTC at a fixed price of 1800’. So, anyone who wants to buy BTC with KMD will see this order and can buy 1 BTC for 1800 KMD.

{
 "userpass": "<userpass>",
 "method": "autoprice",
 "base": "KMD",
 "rel": "BTC",
 "fixed": 1800
}

price with margin

<NEED TO ASK WHAT THIS DOES EXACTLY>

{
 "userpass": "<userpass>",
 "method": "autoprice",
 "base": "KMD",
 "rel": "BTC",
 "margin": 0.01
}

price based on external data

The following command would refresh the price of the order in the orderbook based on price changes as defined in the refrel argument:

<NEED MORE INFO>

{
 "userpass": "<userpass>",
 "method": "autoprice",
 "base": "KMD",
 "rel": "BTC",
 "margin": 0.05,
 "refbase": "kmd",
 "refrel": "coinmarketcap"
}

Note

the base and rel need to be uppercase and the refbase needs to be lowercase

UTXO tools

withdraw

sendrawtransaction

Address tools

calcaddress

Returns the address, wif and public key for the passphrase defined.

{
 "userpass": "<userpass>",
 "method": "calcaddress",
 "passphrase": "<passphrase>"
}

Output (for passphrase default):

{
 "passphrase": "default",
 "coinaddr": "RPZVpjptzfZnFZZoLnuSbfLexjtkhe6uvn",
 "privkey": "30a8eec1ce19687d132fe29051dca629d164e2c4958ba141d5f4133a33f0684f",
 "wif": "Uqe8cy26KvC2xqfh3aCpKvKjtoLC5YXiDW3iYf4MGSSy1RgMm3V5"
}

Docker

lukechilds has provided a docker image for BarterDEX [https://github.com/lukechilds/docker-barterdex-api].

Whitepaper

BarterDEX - a truly decentralized exchange

Abstract

In this whitepaper we describe the implementation of a decentralized exchange that would allow people to trade coins without a counterparty risk. A fully featured service would need to decentralize order matching, trade clearing, and settlement. The order matching would be done through low level pubkey to pubkey messaging protocol and the final settlement through an atomic cross chain protocol. Like any exchange, a decentralized alternative also needs liquidity providers to ensure it has enough liquidity.

Introduction

Money should be exchanged freely and safely from person to person, and currently the most practical method for it is a central exchange. Such centralized solution requires the funds to be exchanged into IOU tokens that are backed by the exchange service provider. In doing so, the clients are under a constant risk of their assets being stolen either by an inside theft or an outside hack. In order to remove these risks, a decentralized alternative must be established.

Among all the exchanges, the trading tends to be centralized in a few exchanges – and there is a reason for it. The speed advantage of trading the exchange IOU attracts the traders, and the traders attract liquidity, which creates the best prices, which attracts even more traders. This network effect is the reason that a few centralized exchanges have been dominating the trading volumes, while all smaller exchanges, both centralized and decentralized, are suffering from lack of liquidity.

A decentralized trading environment was created in 2014 by a service called MultiGateway, that utilized the Nxt Asset Exchange. With the Nxt Asset Exchange it is possible to do decentralized trading, using proxy tokens to represent external cryptocurrencies like Bitcoin. This hybrid solution is being increasingly used by many other blockchain platforms.

One problem with this type of solution, however, is that it loses the speed of a centralized exchange. And another problem is that the storage of external cryptocurrencies is not decentralized, but only distributed at best, which maintains a degree of counterparty risk for the users. This, combined with the need to use a set of gateways to convert the external, native coins to and from the proxy tokens has made it an impractical solution.

The conclusion is that a decentralized alternative that lacks speed cannot compete with the convenience of existing centralized exchanges, and that simply reducing the counterparty risks it is not enough to attract liquidity.

The complete solution

BarterDEX combines three key components: order matching, trade clearing and liquidity provision into a single integrated system that allows users to make a coin conversion request, find a suitable match and complete the trade using an atomic cross-chain protocol. Additionally, there is a privacy layer in the order matching so that two nodes can do a peer-to-peer atomic swap without any direct IP contact between them.

Order matching is the process of pairing buy orders with sell orders. It is done by algorithms that define how the orders are paired, and in which order they get filled. A trade is said to become ‘executed’ once it gets filled.

After execution comes trade clearing, which is the process from the promise of payment to the actual money transfer or settlement, where the assets are swapped between the trading parties.

A liquidity provider (LP) is a trading party that acts as a market maker buying and selling assets. They provide liquidity to the exchange and make their profit from the spread between bid and ask orders. LP’s bring price stability and makes it easier for traders to execute trades.

Order Matching

Before we get into the atomic swap details, there is another aspect of barterDEX that is quite critical: the decentralized orderbook. In order to achieve this, a custom peer to peer network is created that has the analogue of a full relay node and a node that doesn’t relay. Network load on this network is minimized using a combination of hierarchical transmission of the orderbooks, along with fetching of data. Also, there are several different methods to obtain data to maximize the number of nodes that are able to fully connect to the barterDEX network.

One aside to mention is that it is possible to create a totally separate set of BarterDEX nodes by seeding the network with a totally independent set of seed nodes. This enables scaling to arbitrary levels as, if any scaling limit is reached, it is a matter to create a separate network that doesn’t directly interconnect with the other. At such scale, the assumption is that there is plenty of inventory in the orderbooks, especially if the partitioning is done on a per-reference coin basis. In the event it is desired to cross-pollinate orderbook entries from disparate barterDEX networks, it would be possible to have special bridge nodes that cherry pick the desired entries from one network to the other.

Anybody that wants to can run a full relaying node, there is no specific payment to do this and it does require more bandwidth. However, by being a full relaying node, you have better connectivity with all the other nodes and thus a higher percentage chance of having a trade started and completed. This increase in reliability would be enough for active traders and also for significant owners of the DEX asset, making sure there are enough full nodes is a good thing to do.

A non-relaying node is able to do everything a full relaying node can do, so we expect that the vast majority of nodes will be non-relaying nodes and this will enable the barterDEX network to scale to a large number of total nodes. With 100 full nodes, thousands of non-relay nodes can be supported, possibly tens of thousands, though that number has not been reached in practice, so we will have to wait and see what the real world limitations are.

Atomic Swaps

BarterDEX implements the Tier Nolan protocol as described in the bitcointalk thread [https://bitcointalk.org/index.php?topic=1364951].

Overview of the atomic swap protocol

While the thread is quite technical, it gives a very good background into the tradeoffs that went into selecting the atomic swap protocol. The important thing to note is that at each step of the protocol there are incentives/disincentives to proceed to the next step and that regardless of where the protocol stops, each party ends up with what they should get. The understanding is that if you don’t follow the protocol, you will end up paying some amount of penalty.

In order to achieve this, the liquidity provider, who we call bob, needs to have a deposit to ensure his completion of the protocol. This means that bob needs two UTXOs to do an atomic swap. alice also needs two UTXOs, but her additional UTXO is the dexfee that is required to prevent spamming the orderbook. Without this, alice could initiate an unlimited number of atomic swaps and the bobs would all be simply stuck waiting for the time period to expire to get a refund of their deposit. With the dexfee, there is a financial cost to alice for such bad behavior since there is no financial gain for alice to be annoying, we expect that there won’t be much intentional spamming.

Ignoring all the validation details of each step, the atomic swap consists of up to 7 transactions (in some cases, it would be less). The following shows the mainstream SWAP complete! the sequence for both sides:

	alice sends dexfee

	bob sends bobdeposit

	alice sends alicepayment

	bob sends bobpayment

	alice spends the bobpayment

	bob spends the alicepayment

	bob refunds his own deposit

While it seems a bit inefficient to have 7 transactions for a swap that could be done with just 2 transactions, this is what is required to make it trustless and have the characteristic that at any step, there are incentives to go to the next step and where both sides end up with the right amounts regardless of where things stop.

Let us see what happens if things just stop at a certain step:

	alice sends dexfee. If bob does not send the bobdeposit, alice is out a dexfee, which is 1/777 of the transaction amount. This will then give bob a bad reputation and very quickly nobody will trade with bob. As long as the frequency of bob failing to deposit is low, the occasional extra dexfee is a minor issue. Contingency plans are in place to provide refunds if a particular alice node experiences a materially large amount of lost dexfees.

	bob sends bobdeposit. If alice doesn’t send the alicepayment, then alice loses not only the dexfee but gains a bad reputation and soon nobody would trade with alice. We don’t expect this to happen that often.

	alice sends alicepayment. If bob doesn’t send in payment, after 4 hours, alice can claim the bobdeposit, which is 12.5% larger than the payment, so alice ends up with a nice bonus in this case. I would not be surprised if the alice nodes are eager for this case of atomic swap protocol.

	bob sends bobpayment. If alice doesn’t spend the bobpayment, then after 2 hours he can reclaim his payment and then after 4 hours refund his deposit. Once bob refunds his own deposit, then alice is able to reclaim her payment. It is all intricately interconnected as the spending of a specific transaction enables the other party to spend their counterpart.

	alice spends the bobpayment. If bob doesn’t spend the alicepayment, alice is already done with the trading, so there is no more she needs. Bob is sleeping and doesn’t spend the alicepayment, then he is out the alicepayment until he spends it. this is up to bob, but it is a bit dangerous as if he does the refund of the deposit before spending alicepayment, alice would get the info needed to reclaim her payment. It is important for both participants to continue running the atomic swap protocol until it completes. If after 4 hours, bob is still sleeping, then alice is able to claim the deposit and become a happy camper. alice spending the bob deposit, however, does not give her the information needed to reclaim her own payment, so bob is still able to do this when he wakes up.

	bob spends the alicepayment. Similar to above, if bob doesn’t refund his own deposit, it is his loss and purely his responsibility. If after 4 hours, he still hasnt, then alice will be able to claim the deposit.

	bob refunds his own deposit. As you can see at each step, the side that needs to do something is motivated to do so, with greater and greater urgency toward the end.

BarterDEX implements the above in a cross-platform way, across almost a hundred coins, using either native coin daemon or SPV electrum servers. A swap that is not completed during one session can be completed as long as BarterDEX is run before the time expires. It is best to not trade a very large amount unless you are sure of your node’s reliability, especially regarding the internet connection.

Believe it or not, doing the above atomic swap protocol with all the cryptographic validations in between along with a fancy key exchange, is less than half the difficulty of barterDEX. Relatively speaking, it is ‘easy’ to do an atomic swap in isolation between two test nodes with carefully prepared UTXOs made especially for the test. It is an entirely different matter to be able to let anybody start trading with anybody else and have things like orderbooks and ordermatching happen. Due to the peer to peer nature, it is impossible to guarantee a successful swap, however, a failed swap to start is just a few seconds of lost time and there is no cost to try to start a swap. Just like in normal trading, there is no guarantee that you can get the trade you want, similarly, there is no guarantee with barterDEX.

Details of the atomic swap protocol

Let us see what is required in a bit more detail as we now have the context of the atomic swap protocol. In order to even start an atomic swap, there needs to be a pair from alice such that the dexfee and alicepayment can be created and also two from bob, such that the bobdeposit and bobpayment can be created. BarterDEX requires all four of these UTXOs to be specified before the start of the atomic swap protocol.

Here comes the first user issue. Most users don’t know what an UTXO is and most view their balance as a single blob of coins they can spend at the satoshi level. The reality is that the bitcoin protocol maintains a list of Unspent Transaction Outputs (UTXO) of specific values and to make a transaction, there needs to be inputs sufficient to pay for the outputs. Any excess goes into a change output (let us ignore txfees for now, even though BarterDEX automatically calculates the current BTC txfee to pay that will get confirmed quickly).

It is impractical to have the user specify which UTXO pair to use, and it is not possible for alice to even know what UTXOs bob has available at the moment of negotiating a trade. What barterDEX does is an atomic swap negotiation protocol as follows:

	alice sends a “request” to a specific bob with her pair of UTXOs, price and volume

	bob validates the “request” to make sure the alice UTXOs are valid and that the price is acceptable, then bob scans all his UTXOs for the most efficient way to create both the bobpayment and bobdeposit UTXOs. The constraint is that it needs to match the price alice wants to pay and the volume and the deposit at least 12.5% bigger than the payment. If all these things are met, then bob sends back a “reserved” packet to alice. By doing this just in time, bob minimizes the funds that are tied up doing deposit duty.

	alice validates the “reserved” packet from bob, making sure all the UTXOs are valid, the price and volumes are acceptable and if so sends a “connect” packet to bob with the same parameters as in the “reserved”. Between the “request” being sent and the “reserved” being received or a 10-seconds timeout, alice is prevented from making any other trade request. It is important to make sure the current pending atomic swap is properly started and this prevention is also part of the whale resistance property for dICO (decentralized initial coin offering).

	bob validates the “connect” and if all is well, starts a new thread to do the atomic swap.

	alice receives the “connect” and if all is well, starts a new thread to do the atomic swap.

There is one more “negotiation” step that is needed between alice and bob and while it could have been part of the 5 steps above, due to legacy reasons it ended up inside the atomic swap protocol itself. In the event there is no consensus on the coin confirmations to use, the atomic swap aborts without any payments being sent. No harm, no foul.

DEX fee - dexfee

People will notice that there is a small dexfee, paid by alice, as part of the barterDEX protocol. This is 1/777 of the transaction amount and it is calibrated to make spam attacks impractical. Impractical as in costing real money. Without this spam prevention, BarterDEX could be cost-effectively DOS attacked at the protocol level.

The 1/777 ends up being 0.1287%. This is less than almost all the centralized exchanges, in many cases by a significant margin. Please note that the central exchanges charge both sides of the trade, so even if they charge 0.2%, it is actually 0.4% total fees.

The dexfee helps secure the barterDEX network and it is set at a level that is less than the central exchanges. It is possible that some trades can start without completing and since the dexfee is charged first in the protocol. In this sense, there would be a dexfee charged for these failed atomic swaps. While the decentralized exchanges using proxies charge for every bid and every ask, even if a trade doesn’t happen at all. This is a big negative for trading on proxy-powered DEX’s.

However, it should not be looked upon in isolation. The barterDEX protocol is based on statistics and statistically, there will be some percentage of atomic swaps that are started that won’t complete. Let us say this is a 15% failure rate (this is much higher than we are seeing in testing, where 95%+ of atomic swaps that are started complete, or reach the bobdeposit phase at the minimum), then the effective dexfee cost is still around 0.15%

This is why even though the 1/777 ratio is 0.1287%, it is better to state the dexfee as 0.15%

Fees are collected and distributed to DEX asset holders, which is an assetchain. Any DEX assetchain unit holder will receive this DEX fee as a dividend, paid in KMD.

Transaction Confirmations

Since barterDEX is trading real coins and not just updating an internal database (or a proxy tokens account balance for proxy DEX), both sides need to wait for coin confirmations to the level they are comfortable. Since the payments sent on one chain won’t be reorganized if the other chain does, it is important to have enough confirmations for the size of the trade being done. In order to enable this, there is a setconfirms API call that can be called for each coin. This needs to be done before the atomic swap is started as the current numconfirms for the coin will be sent to the other side and the larger of alice or bob’s numconfirms will be used. There is also a maxconfirms value to prevent one side from specifying an abnormal high amount of numconfirms.

Zero Transaction Confirmations

To be able to offer the user a trading experience similar to existing centralized exchanges, zero confirmation mode can be enabled. It is quite risky to do this, especially for fast block confirmation time coins with low hashrate. For zero confirmation swaps to be enabled, both sides of a trade need to have so-called zcredits, a locked amount of KMD that is more than the value of that trade.

Efficiency of orderbook

We have now worked backward from the atomic swap details to the ordermatch process and this leaves the efficient orderbook propagation as the only part left to describe. barterDEX uses a convention of base/rel meaning base currency converted to rel currency. Buying a base/rel means to use rel currency to buy base currency, price denominated in base/rel: buy 1 base for x rel, x being the price.

In order to construct an orderbook a node needs to have price information and since everything is pubkey based, this means a price from a pubkey. Ultimately a specific txid/vout (UTXO) is needed, but a single node could have hundreds of UTXOs and this would use up a lot of network bandwidth to propagate it globally. barterDEX, therefore, uses a hierarchical orderbook, where the skeleton of it is just the pubkey/price for a particular base/rel pair. Note that a buy of base/rel at price is the same as a sell of rel/base at 1/price. So all that is needed to populate the orderbook skeleton is for a node to broadcast its pubkey and price for a base/rel pair. Given this, nodes that are running a local coin daemon can find the possible list of UTXOs via listunspent on demand.

Critical information is fully signed to prevent spoofing, so all nodes can verify the smartaddress associated with a pubkey and also that the price being broadcast is a valid price. The electrum SPV coins do a specific SPV validation for all UTXO before they are approved for trading.

If all nodes were always broadcasting all their UTXOs to all other nodes, it would rapidly lead to congestion. Most of the time barterDEX just relies on the pubkey/prices and this is enough to create useful orderbooks. Since there are N*N possible orderbooks given N currencies, it is not practical to be updating all possible orderbooks, instead, they are created when requested from the raw data. During the orderbook creation, if the top entries in the orderbook don’t have any listunspent data, a request for it is made to the network.

This process ensures that by the time a trade is done, already an orderbook has been requested which in turn requests the listunspent data for the most likely pubkeys. The actual ordermatch process then iterates through the orderbook scanning all the locally known UTXOs to find a high probability counterparty to make the “request” offer to. In practice, we are seeing the nearly instantaneous response when all the parameters are properly met.

References

barterDEX – A Practical Native DEX (https://github.com/KomodoPlatform/KomodoPlatform/wiki/BarterDEX-%E2%80%93-A-Practical-Native-DEX)

Nakamoto Satoshi (2008): Bitcoin: A peer-to-peer electronic cash system. (http://www.bitcoin.org/bitcoin.pdf)

Mtchl (2014): The math of Nxt forging (https://www.docdroid.net/ahms/forging0-4-1.pdf.html)

King Sunny, Nadal Scott (2012): PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake (https://peercoin.net/assets/paper/peercoin-paper.pdf)

Delegated Proof-of-Stake Consensus (https://bitshares.org/technology/delegated-proof-of-stake-consensus/)

Miers Ian, Garman Christina, Green Matthew, Rubin Aviel: Zerocoin: Anonymous Distributed E-Cash from Bitcoin (https://isi.jhu.edu/~mgreen/ZerocoinOakland.pdf)

Ben-Sasson Eli, Chiesa Alessandro, Garman Christina, Green Matthew, Miers Ian, Troer Eran, Virza Madars (2014): Zerocash: Decentralized Anonymous Payments from Bitcoin (http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf)

Ben-Sasson Eli, Chiesa Alessandro, Green Matthew, Tromer Eran, Virza Madars (2015): Secure Sampling of Public Parameters for Succinct Zero Knowledge Proofs (https://www.diyhpl.us/~bryan/papers2/bitcoin/snarks/Secure%20sampling%20of%20public%20parameters%20for%20succinct%20zero%20knowledge%20proofs.pdf)

NXT Community: NXT Whitepaper (https://nxtwiki.org/wiki/Whitepaper:Nxt)

Larimer Daniel, Scott Ned, Zavgorodnev Valentine, Johnson Benjamin, Calfee James, Vandeberg

Michael (March 2016): Steem, An incentivized, blockchain-based social media platform.(https://steem.io/SteemWhitePaper.pdf)

BitFury Group (Sep 13, 2015): Proof of Stake versus Proof of Work White Paper (http://bitfury.com/content/5-white-papers-research/pos-vs-pow-1.0.2.pdf)

Index

 style:
indentation distance of output json
create empty addresses for examples
base rel explanation

guides:
How to claim a 0-conf deposit manually
How to become a LP?
How to use Insomnia together with the CLI
How to build BarterDEX from source

How to use your native wallet with BarterDEX

	make sure to have valid .conf file set, with at least a rpcuser and (strong!) rpcpassword

	when a transaction was sent to the smartaddress after using it for the first time, the wallet needs to be rescanned.

<coin>d -rescan in CLI
start <coin>-qt from CLI and add -rescan

API docs:
pricing
utxo splitting
the rest

FaQ:
What are the differences between BarterDEX and Altcoin.io?
———————————————————-

What are the differences between BarterDEX and Waves DEX?

Can I privately swap coins with another person?

What is a Liquidity Provider (LP) node?

How do I cancel an order?

This touches on the specifics of BarterDEX being a glorified auction instead of an exchange. <MORE INFO NEEDED>

How does the BarterDEX trading mechanism work?

 is profitmargin applicable to client startup arguments?

 _static/images/github_release.png
¥ KomodoPlatform / BarterDEX © Watch~

forked from siuynotdexuglygu

< Code Issues 15

Latestrelease

Dos5rc
o 457e675
Verified

Pull requests 0 Projects 0 Wiki Insights

BarterDEX 0.8.5 Release Candidate

[satindergrewal released this 5 hours ago

Assets

@ BarterDEX-linux-x64-0.8.5-rc.tar.gz

@ BarterDEX-0sx-x64-0.8.5-rc.zip

@ BarterDEX-win64-x64-0.8.5-rc.zip

D) Source code (zip)

Source code (tar.gz)

2

S Star

56

YFork 4

55.8 MB
52.6 MB

59.6 MB

_static/images/insomnia-overview.png
BarterDEX (Net

BarterDEX

New Environment +

& 7783

POST enat

POST getcoin

POST listunspent

POST status

POST swapstatus
POST setpassphrase

POST orderbook BCHIKMD

posT

POST orderbook KMD/coin (C

posT

POST electrumCHIPS

posT

orderbook BCH/KMD

hitp/127.0.0.

buy BCH/KMD

iy KMDIfrel (C

TIME1.88ms SIZE411B

Preview v | Header S Cookie Timeline

€
“bids™: 1,
“numbids
“biddepth
“asks™: [

8

o,

“coin®; "8CH,
“address’:
“qrpluyxTkuegkrhéded3fel ta6u3zhafpstupkchc2”
“price”: 332.9024218,
“nunutxos™ 58,
“avevolune™: 2.66385937,
“raxvolune’: 37.29403125,
“depth”: 154.50384374,
“pubkey’
“babéadzeebe1eq66369cabS04d4622b22C1 FlefT18e F388eE80
20f30a1573001",

“numasks”: 1,

“askdepth”: 193.12980468,
“base™: "8CH,
“rel’: k0",
“tinestanp”: 1521240647,
“netid’:

1

_static/images/env-init.png
No Environment

Manage Environments

_static/images/env-orderbook-result.png
L

“userpass”™
“rethod"
“base”

_images/electrum-kmd-btc.png
No Environment +

im e

ferbook

Caokies

°

electrum KMD.

c

MD/BTC

userpass”: "ae34c9950e8F6es0b463065930bbcf dafcOeSd3bId2c898149e5e8431b6e ",

d

ipaddr”:

+

electrun’,
00",

electrun?. cipig.net”,
10061

_static/images/orderbook-update-data.png
e34c9953e8f6e50b463065930bbe Fdafcoesd3b3d2cas9stagesedaazotbse” ,
orderbook”,

_images/env-base-userpass.png
Base Environment

Sub Environments

°

Base Environment

L
1

“ryuserpass”

“ae34c9952e8F5e50b463065930bbc FFdafc9esd3b3d2cBIB149eSedB391b5e”

_static/images/setpassphrase-after-beautify.png
€ 7ca9059674d0bs04011989C926133003ab6c0aa092eT19ce64T9T823cd413"
passphrase”,

passphra:
qui: “nogui

b

_images/buy-orderbook-ex.png
“address”: "RAzheh3L7QtBLTONKByVa43CtoALhtebbT",
“price”: 0.00036349,
“nunutxos™: 255,

“avevolune”: 0.0017447,
“raxvolune” : 0.0498998,
0.04a49117,

~50959696e9d95445853b113b54bFd695F7dd1a272F01700b13d5cA7eabIbeT04”
“age’: 12
“zcredits”: 0
3

_static/images/orderbook-initial.png
© ™ TestBarterDEX - orderbook KMD/BTC

No Environment ~ Caokies JSON +

° L

orderbook”,
orderbook KMD/BTC

setpassphrase 1

_images/edit-coins-zec.png

_static/images/orderbook-output.png
JSON + Preview v

€ €
pass’ bids™: [
a634c995ae86e50b463065930bbeFFdafcOesd3b3d2cBa9R149e5edBaIobse” , €
orderbook”, oin"; "BIC",
K, address™: "12{HaBAINbSCGTSAr1ZNUXi18QhK2IFYY"
rel": "BIC price”: 0.00033494,
1 nunutros”: 25,

+ 0.00800000,
0.9600000,
+ 9.20009000,

1,

coin’s “BIC,
address™: "INTRX4NSQEILHZX24ht2ZHwc
price”: 0.00033395,

nunutros”: 1,

_images/env-orderbook-result.png
L

“userpass”™
“rethod"
“base”

_images/github_release.png
¥ KomodoPlatform / BarterDEX © Watch~

forked from siuynotdexuglygu

< Code Issues 15

Latestrelease

Dos5rc
o 457e675
Verified

Pull requests 0 Projects 0 Wiki Insights

BarterDEX 0.8.5 Release Candidate

[satindergrewal released this 5 hours ago

Assets

@ BarterDEX-linux-x64-0.8.5-rc.tar.gz

@ BarterDEX-0sx-x64-0.8.5-rc.zip

@ BarterDEX-win64-x64-0.8.5-rc.zip

D) Source code (zip)

Source code (tar.gz)

2

S Star

56

YFork 4

55.8 MB
52.6 MB

59.6 MB

_images/env-dropdown.png

_static/images/setpassphrase-after-send.png
© ™ TestBarterDEX - setpassphrase

No Environment ~ Caokies JSON + Preview v

° L €

userpass”: "ef7cadds96Fdob04911989c9261330d3ab6COaa0S2ET9CeATIFBC23cdA13", ult": "success”,

_ o1 “passphrase”, —

setpassphrase passphrase ‘thisismyverystrongpassphrase”, ‘ae34c995ae86e50b463065930bbe ffdafc9esd3b3d2cB898149e5edB4391b6e",
gut*: “nogut mypubkey”:

] Sad7a3e44 04522476221 TOF e dTe2 S FOATCATSAaATS40628",

pubse

02c8fbausbaecdssFdadde1F62b7F432d85584e63002c13a87092962cda3sdse”
KAD": "RUSuSunb3BjenoyrkaShywprRAYiBinCa”,
LANRUKE WS ocFHQTatRVEFE67UTwej6 ",

B1C

V4SP-TXCL-Z2KG-HSQSK”,
coins™: [
8
coin’: “BIC,
installed”: true,
height”: 0,
balan
K0value': 6,
status™: “inactive”,
Smartaddress™: "1LAINRUKBJWSiocFHQTatRVeF6GTUTweS6"
pc”: "127.9.0.1:8332%,

_images/env-init.png
No Environment

Manage Environments

_static/images/setpassphrase-beautify.png
© ™ TestBarterDEX - setpassphrase

No Environment + Caokies JSON +

pass”:"1d8b27b21efabcdesT1cds6F
1048fb9asdceh23d2Tcs 3bF9223dchfBcdB1F

T setpassphrase .

42 “passphrase”, “passphras
ot nogut]

_images/insomnia-overview.png
BarterDEX (Net

BarterDEX

New Environment +

& 7783

POST enat

POST getcoin

POST listunspent

POST status

POST swapstatus
POST setpassphrase

POST orderbook BCHIKMD

posT

POST orderbook KMD/coin (C

posT

POST electrumCHIPS

posT

orderbook BCH/KMD

hitp/127.0.0.

buy BCH/KMD

iy KMDIfrel (C

TIME1.88ms SIZE411B

Preview v | Header S Cookie Timeline

€
“bids™: 1,
“numbids
“biddepth
“asks™: [

8

o,

“coin®; "8CH,
“address’:
“qrpluyxTkuegkrhéded3fel ta6u3zhafpstupkchc2”
“price”: 332.9024218,
“nunutxos™ 58,
“avevolune™: 2.66385937,
“raxvolune’: 37.29403125,
“depth”: 154.50384374,
“pubkey’
“babéadzeebe1eq66369cabS04d4622b22C1 FlefT18e F388eE80
20f30a1573001",

“numasks”: 1,

“askdepth”: 193.12980468,
“base™: "8CH,
“rel’: k0",
“tinestanp”: 1521240647,
“netid’:

1

_images/orderbook-initial.png
© ™ TestBarterDEX - orderbook KMD/BTC

No Environment ~ Caokies JSON +

° L

orderbook”,
orderbook KMD/BTC

setpassphrase 1

_images/buy-copy-curl.png
No Environment +

POST buy
POST enable BTC
POST electrum KMD.

POST electrum BTC

Caokies

JSON v | Auth
v f

2v “userpass®

3 “method”

4

6 “relvolune’: 0.005,

1

“price’s

Query

_static/images/setpassphrase-to-json.png
o TestBarterDEX - setpassphrase

TestBarterDEX -
No Environment ~ Gookies Other ~
°
POST setpassphrase itipart Form

orm URL Enc

N

XML

v Othe

_images/orderbook-output.png
JSON + Preview v

€ €
pass’ bids™: [
a634c995ae86e50b463065930bbeFFdafcOesd3b3d2cBa9R149e5edBaIobse” , €
orderbook”, oin"; "BIC",
K, address™: "12{HaBAINbSCGTSAr1ZNUXi18QhK2IFYY"
rel": "BIC price”: 0.00033494,
1 nunutros”: 25,

+ 0.00800000,
0.9600000,
+ 9.20009000,

1,

coin’s “BIC,
address™: "INTRX4NSQEILHZX24ht2ZHwc
price”: 0.00033395,

nunutros”: 1,

nav.xhtml

 Table of Contents

 		
 Welcome to BarterDEX’s documentation!

 		
 Frequently Asked Questions

 		
 What is an atomic swap?

 		
 How to get listed on BarterDEX?

 		
 Electrum or Native?

 		
 What are Zcredits?

 		
 What are UTXOs?

 		
 Why are multiple UTXOs needed?

 		
 Why can’t I claim my expired 0-conf deposit?

 		
 Who are alice and bob?

 		
 Is it free to cancel an order?

 		
 How do I get the private key of my smartaddress?

 		
 How much are the fees?

 		
 Currently supported coins

 		
 What are the differences between BarterDEX and BlockNET DX?

 		
 Do I need to leave BarterDEX running all the time?

 		
 Getting Started with BarterDEX

 		
 What you need to know before using BarterDEX

 		
 Windows

 		
 Download and setup

 		
 Guides

 		
 How to use BarterDEX using CLI

 		
 Requirements

 		
 Installation & Setup

 		
 How to use Insomnia together with the CLI

 		
 Setting the passphrase

 		
 Fetch the orderbook

 		
 Environment variables

 		
 Buy request

 		
 Folders

 		
 Filtering

 		
 Electrum calls

 		
 History

 		
 How to edit the coins file

 		
 How to create a new BarterDEX trading network

 		
 API docs

 		
 Introduction

 		
 Starting marketmaker

 		
 Startup arguments

 		
 New or private network

 		
 Multiple marketmaker instances

 		
 General commands

 		
 orderbook

 		
 Price commands

 		
 autoprice

 		
 UTXO tools

 		
 withdraw

 		
 sendrawtransaction

 		
 Address tools

 		
 calcaddress

 		
 Docker

 		
 Whitepaper

 		
 Abstract

 		
 Introduction

 		
 The complete solution

 		
 Order Matching

 		
 Atomic Swaps

 		
 Overview of the atomic swap protocol

 		
 Details of the atomic swap protocol

 		
 DEX fee - dexfee

 		
 Transaction Confirmations

 		
 Zero Transaction Confirmations

 		
 Efficiency of orderbook

 		
 References

_static/images/setpassphrase-init.png
#1/bin/bash

source userpass

source passphrase

curl --url "http://127..0.1:7763" --data "{\"userpass\

“method\":

_static/images/setpassphrase-new-request.png
New Request

Create

_images/setpassphrase-after-send.png
© ™ TestBarterDEX - setpassphrase

No Environment ~ Caokies JSON + Preview v

° L €

userpass”: "ef7cadds96Fdob04911989c9261330d3ab6COaa0S2ET9CeATIFBC23cdA13", ult": "success”,

_ o1 “passphrase”, —

setpassphrase passphrase ‘thisismyverystrongpassphrase”, ‘ae34c995ae86e50b463065930bbe ffdafc9esd3b3d2cB898149e5edB4391b6e",
gut*: “nogut mypubkey”:

] Sad7a3e44 04522476221 TOF e dTe2 S FOATCATSAaATS40628",

pubse

02c8fbausbaecdssFdadde1F62b7F432d85584e63002c13a87092962cda3sdse”
KAD": "RUSuSunb3BjenoyrkaShywprRAYiBinCa”,
LANRUKE WS ocFHQTatRVEFE67UTwej6 ",

B1C

V4SP-TXCL-Z2KG-HSQSK”,
coins™: [
8
coin’: “BIC,
installed”: true,
height”: 0,
balan
K0value': 6,
status™: “inactive”,
Smartaddress™: "1LAINRUKBJWSiocFHQTatRVeF6GTUTweS6"
pc”: "127.9.0.1:8332%,

_images/setpassphrase-beautify.png
© ™ TestBarterDEX - setpassphrase

No Environment + Caokies JSON +

pass”:"1d8b27b21efabcdesT1cds6F
1048fb9asdceh23d2Tcs 3bF9223dchfBcdB1F

T setpassphrase .

42 “passphrase”, “passphras
ot nogut]

_images/orderbook-update-data.png
e34c9953e8f6e50b463065930bbe Fdafcoesd3b3d2cas9stagesedaazotbse” ,
orderbook”,

_images/setpassphrase-after-beautify.png
€ 7ca9059674d0bs04011989C926133003ab6c0aa092eT19ce64T9T823cd413"
passphrase”,

passphra:
qui: “nogui

b

_images/setpassphrase-new-request.png
New Request

Create

_images/setpassphrase-to-json.png
o TestBarterDEX - setpassphrase

TestBarterDEX -
No Environment ~ Gookies Other ~
°
POST setpassphrase itipart Form

orm URL Enc

N

XML

v Othe

_images/setpassphrase-copy-curl.png
o TestBarterDEX - setpassphrase

TestBarterDEX - ET v

No Environment + Caokies Body ~

ET setpassphrase

_images/setpassphrase-init.png
#1/bin/bash

source userpass

source passphrase

curl --url "http://127..0.1:7763" --data "{\"userpass\

“method\":

_static/ajax-loader.gif

_static/images/setpassphrase-copy-curl.png
o TestBarterDEX - setpassphrase

TestBarterDEX - ET v

No Environment + Caokies Body ~

ET setpassphrase

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/images/edit-coins-zec.png

_static/images/electrum-btc.png
JSON +

userpass”: "ae34c9950e8F6es0b463065930bbcf dafcOeSd3bId2c898149e5e8431b6e ",
electrun’,

: "BIC”,
ipaddr”: "173.212.225.176",
port”: 50901

1

_static/images/buy-copy-curl.png
No Environment +

POST buy
POST enable BTC
POST electrum KMD.

POST electrum BTC

Caokies

JSON v | Auth
v f

2v “userpass®

3 “method”

4

6 “relvolune’: 0.005,

1

“price’s

Query

_static/images/buy-orderbook-ex.png
“address”: "RAzheh3L7QtBLTONKByVa43CtoALhtebbT",
“price”: 0.00036349,
“nunutxos™: 255,

“avevolune”: 0.0017447,
“raxvolune” : 0.0498998,
0.04a49117,

~50959696e9d95445853b113b54bFd695F7dd1a272F01700b13d5cA7eabIbeT04”
“age’: 12
“zcredits”: 0
3

_static/images/env-dropdown.png

_static/images/electrum-kmd-btc.png
No Environment +

im e

ferbook

Caokies

°

electrum KMD.

c

MD/BTC

userpass”: "ae34c9950e8F6es0b463065930bbcf dafcOeSd3bId2c898149e5e8431b6e ",

d

ipaddr”:

+

electrun’,
00",

electrun?. cipig.net”,
10061

_static/images/env-base-userpass.png
Base Environment

Sub Environments

°

Base Environment

L
1

“ryuserpass”

“ae34c9952e8F5e50b463065930bbc FFdafc9esd3b3d2cBIB149eSedB391b5e”

